Table 4. V-O bond lengths (\AA) in isotypic $\mathrm{M}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ structures

	$\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$	$\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ length	$\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ length	$\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$	Predicted length	Weighted
		$1.715(5)$	$1.722(2)$	$1.716(1)$	$1.73(1)$	$1.707(20)$
V-O(1)		$1.810(5)$	$1.813(2)$	$1.809(1)$	$1.79(1)$	$1.762(20)$
$\mathrm{V}-\mathrm{O}(2)$		1.720				
$\mathrm{~V}-\mathrm{O}(3)$	$2 \times$	$1.702(5)$	$1.704(2)$	$1.695(1)$	$1.67(1)$	$1.707(20)$

[^0]References
Gopal, R. (1972). Ph. D. Thesis, McMaster Univ., Hamil- ton, Ontario.

Baur, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129155.

Fuess, H., Bertaut, E. F., Pauthenent, R. \& Durif, A. (1970). Acta Cryst. B26, 2036-2046.

GopaL, R. \& Calvo, C. (1971). Canad. J. Chem. 49, 30563059.

Krishnamachari, N. \& Calvo, C. (1971). Canad. J. Chem. 49, 1629-1634.

Acta Cryst. (1973). B29, 2306

Dicarbonylnitrosyltriphenylarsinecobalt(0)

By G. Gilli
Istituto Chimico, Università di Ferrara, Ferrara, Italy
M.SACERDOTI
Istituto di Mineralogia, Università di Ferrara, Ferrara, Italy
and G. Reichenbach
Istituto di Chimica Fisica, Università di Perugia, Perugia, Italy

(Received 16 April 1973; accepted 15 May 1973)

Abstract

Triclinic, $P \overline{1}, a=11 \cdot 286$ (4), $b=10.623$ (4), $c=10.454$ (5) $\AA, \alpha=116.53(4)^{\circ}, \beta=77.87(4)^{\circ}, \gamma=$ 118.30 (4) ${ }^{\circ}$, formula $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{CoNO}_{3} \mathrm{As}, Z=2, D_{x}=1.53$ $\mathrm{g} \mathrm{cm}^{-3}$. The structure consists of discrete molecular units. The coordination around cobalt is approximately tetrahedral and N and C atoms in the nitrosyl and carbonyl groups are disordered.

Introduction. Points of interest in tetracoordinate cobalt nitrosyl complexes lie in the deformation of the tetrahedral coordination in presence of different ligands and in the value of the $\mathrm{Co}-\mathrm{N}-\mathrm{O}$ angle. For this angle, values of 127,121 and 119° have been reported respectively for $\mathrm{Co}(\mathrm{NO})\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CN}_{3}\right)_{2}\right]$ (Alderman, Owston \& Rowe, 1962), $\left[\mathrm{CoCl}(\mathrm{NO})(\mathrm{en})_{2}\right]\left[\mathrm{ClO}_{4}\right]$ (Snyder \& Weaver, 1969) and $\left[\mathrm{Co}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right]_{\mathrm{Cl}}^{2}$ (Pratt, Coyle \& Ibers, 1971). Markedly less bent linkages are reported for different complexes: 170° for $\left[\mathrm{Co}(\mathrm{NO})_{2} \mathrm{I}\right]_{n}$ (Dahl, de Gil \& Feltham, 1969) and 178° for $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{2}$ PPh_{3} (Albano, Bellon \& Ciani, 1972; Ward, Caughlan, Voecks \& Jennings, 1972).

Experimental. Crystals of $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{CoNO}_{3}$ As were prepared by the method of Innorta, Reichenback \& Fof-
fani (1970) from $\mathrm{Co}(\mathrm{CO})_{3} \mathrm{NO}$ and AsPh_{3}. A crystal having a cross section $0.20 \times 0.11 \mathrm{~mm}$, covered by a collodion film, was mounted along the c axis. The unit-cell dimensions were refined by a least-squares fit from the powder pattern. Intensity data were collected from equi-inclination Weissenberg photographs with Fe $K \alpha$ radiation. A combination of the multiple-film and multiple-exposure techniques was used. Intensities were measured by photometric integration of reflexions, integrated one-dimensionally by the Weissenberg camera. Altogether, 1499 reflexions were collected (of which 465 were not observed). The intensities were not corrected for absorption ($\mu=0 \cdot 6$).

Scattering factors were taken from Cromer \& Waber (1965). Allowance was made for the Δf^{\prime} and $\Delta f^{\prime \prime}$ terms of the As and Co atoms. The computations were carried out on a CDC-6600 computer with the X-RAY 71 system of crystallographic programs.

The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix leastsquares calculations. The level-by-level scale factors were refined during the isotropic refinement. The N and C atoms in the nitrosyl and carbonyl groups could not be distinguished and were refined as composite
' CN atoms' having a scattering factor $\frac{1}{3} f_{\mathrm{N}}+\frac{2}{3} f_{\mathrm{C}}$. Positions of the H atoms were calculated assuming a $\mathrm{C}-\mathrm{H}$ bond length of $1.08 \AA$. Weights for the last cycle were calculated as $w=1 /\left(9 \cdot 0-0 \cdot 75\left|F_{o}\right|+0 \cdot 027\left|F_{o}\right|^{2}\right)$. A constant weight of $\frac{1}{5}$ was used for the contributing unobserved reflexions, having $\left|F_{o}\right|<\left|F_{c}\right|$ (80 in the last cycle). The final value of the R index ($\left.R_{1}=\sum|\Delta| / \Sigma\left|F_{o}\right|\right)$ is $0 \cdot 084$. Final atomic coordinates and temperature factors are given in Table 1 and a selection of bond lengths and angles is given in Table 2.*

Discussion. The structure consists of discrete monomeric units without significant intermolecular contacts. An overall view of the molecule is shown in Fig. 1. The coordination symmetry about the Co and As atoms is approximately $C_{3 v}$ and the carbonyl-nitrosyl groups nearly eclipse the phenyl groups.
The values of the average angles $\mathrm{C}-\mathrm{As}-\mathrm{C}\left(101 \cdot 3^{\circ}\right)$ and Co-As-C $\left(116 \cdot 6^{\circ}\right)$ and the mean As-C bond length ($1.93 \AA$) are comparable with the corresponding values of $101 \cdot 8^{\circ}, 116 \cdot 3^{\circ}$ and $1 \cdot 95 \AA$ obtained for the complex $\left(\mathrm{Ph}_{3} \mathrm{As}\right)_{2} \mathrm{Cl}_{2} \mathrm{Rh}\left(\pi-\mathrm{C}_{4} \mathrm{H}_{7}\right)$ (Hewitt, de Boer \& Anzenhofer, 1970).
The $\mathrm{Co}-\mathrm{CN}$ and $\mathrm{CN}-\mathrm{O}$ distances (1.74 and $1.15 \AA$) and the angles of the distorted cobalt tetrahedron (104.9° for $\mathrm{As}-\mathrm{Co}-\mathrm{CN}$ and 113.6° for $\mathrm{CN}-\mathrm{Co}-\mathrm{CN}$) are strictly similar to those found in the isomorphous compound $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{2} \mathrm{PPh}_{3}$ (Albano, Bellon \& $\mathrm{Ci}-$ ani, 1972; Ward, Caughlan, Voecks \& Jennings, 1972). The departure of the Co-CN-O angles from 180° is not significant, although the high anisotropic vibration parameters on the $\mathrm{CN}(3)$ and $\mathrm{O}(3)$ atoms [found also

[^1]in $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{2} \mathrm{PPh}_{3}$] could be a sign of a disordered bent linkage $\mathrm{Co}-\mathrm{CN}-\mathrm{O}$. This kind of disorder was found in $\operatorname{IrCl}_{2}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ for the $\mathrm{Co}-\mathrm{N}-\mathrm{O}$ group (Mingos \& Ibers, 1971).
The significant difference between the $\mathrm{As}-\mathrm{Co}-\mathrm{CN}$ and $\mathrm{CN}-\mathrm{Co}-\mathrm{CN}$ angles has been explained for this class of complexes in terms of non-bonding repulsion between ligand orbitals which receive electron density via π back-donation in compounds having different accepting abilities (Albano, Bellon, Ciani \& Manassero, 1972).

Fig. 1. Molecule of $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{2} \mathrm{AsPh}_{3}$, illustrating the thermal parameters at 40% probability.

Table 1. Positional and thermal parameters of non-hydrogen atoms (Thermal parameters (in $\AA)^{2}$ have been multiplied by 10^{2}. E.s.d.'s are shown in parentheses.)

	x / a			z / c		U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co				$0 \cdot 27839$ (36)		$6 \cdot 48$ (20)	7.55 (28)	$8 \cdot 37$ (30)	3.45 (19)) -1.17 (16)	3.31 (20)
As		$0 \cdot 28310(30)-0.17965(40)$$0 \cdot 18223(16)-0.11114(21)$		$0 \cdot 16433$ (20)		$4 \cdot 11$ (10)	$3 \cdot 81$ (13)	$3 \cdot 92$ (16)	1.71 (8)	-0.12 (7)	1.58 (8)
$\mathrm{CN}(1)$		0.3729 (17) -0.0055 (22)		$0 \cdot 42$	3 (21)	$6 \cdot 0$ (10)	$4 \cdot 7$ (13)	$7 \cdot 2$ (15)	$2 \cdot 2$ (9)	-0.6(9)	2.8 (10)
$\mathrm{CN}(2)$		$0 \cdot 3905$ (18)			(20)	$7 \cdot 0$ (11)	$10 \cdot 6$ (17)	$5 \cdot 8$ (14)	$5 \cdot 5$ (12)	$0 \cdot 8$ (9)	1.0 (10)
$\mathrm{CN}(3)$		$0 \cdot 1521$ (21)		$0 \cdot 32$	(26)	$6 \cdot 6$ (13)	$7 \cdot 7$ (18)	13.3 (21)	$2 \cdot 5$ (12)	-1.2 (12)	7.4 (14)
$\mathrm{O}(1)$		$0 \cdot 4333$ (15)		$0 \cdot 50$	(16)	9.0 (10)	9.5 (13)	7.4 (12)	$5 \cdot 1$ (10)	-1.6 (8)	$1 \cdot 3$ (10)
$\mathrm{O}(2)$		$0 \cdot 4656$ (17)		0.06	(20)	$9 \cdot 5$ (12)	$13 \cdot 3$ (17)	12.7 (16)	$6 \cdot 6$ (12)	-0.2 (10)	$1 \cdot 3$ (12)
$\mathrm{O}(3)$		0.0667 (21) -0.4146 (34)		$0 \cdot 3602$ (33)		$9 \cdot 0$ (14)	$20 \cdot 2$ (29)	29.9 (34)	$2 \cdot 8$ (16)	-0.7 (17)	$20 \cdot 8$ (28)
	x / a	y / b			U				y / b	z / c	U
C(1)	$0 \cdot 2301$ (16)	$0 \cdot 1063$ (20)	$0 \cdot 2372$	(18)	$4 \cdot 8$ (4)	C(10)	- 0.2894	(19) -0.3	098 (24)	$0 \cdot 2039$ (22)	6.7 (6)
C(2)	$0 \cdot 3715$ (19)	$0 \cdot 2125$ (26)	0.2564	(21)	$7 \cdot 1$ (6)	C(11)) -0.2319	(19) -0.31	133 (24)	0.0753 (21)	6.6 (6)
C(3)	$0 \cdot 4125$ (23)	0.3743 (31)	$0 \cdot 3050$		$8 \cdot 7$ (7)	C(12)) -0.0913	(17) -0.2	527 (21)	0.0582 (19)	$5 \cdot 4$ (5)
C(4)	$0 \cdot 3168$ (23)	0.4279 (28)	0.3404	(25)	85 (7)	C(13)) 0.2149	(16) -0.	616 (21)	-0.0383 (19)	$4 \cdot 8$ (4)
C(5)	$0 \cdot 1874$ (22)	0.3306 (29)	0.3316	(25)	$8 \cdot 2$ (6)	C(14)	0.2217	(17) -0.3	3011 (22)	-0.1237 (21)	5.7 (5)
C(6)	$0 \cdot 1422$ (17)	$0 \cdot 1738$ (23)	0.2748	(20)	6.0 (5)	C(15)) 0.2438	(18) -0.3	415 (24)	-0.2688 (22)	$6 \cdot 4$ (5)
C(7)	-0.0122 (15)	-0.1968 (19)	$0 \cdot 1761$	(17)	4.2 (4)	C(16)) 0.2620	(19) -0.	439 (26)	-0.3265 (23)	$6 \cdot 9$ (5)
C(8)	-0.0729 (17)	-0.2011 (22)	$0 \cdot 3054$	(20)	$6 \cdot 0$ (5)	C(17)	(7) 0.2592	(22) -0.0	956 (29)	-0.2421 (27)	8.7 (7)
C(9)	-0.2146 (19)	-0.2593 (24)	$0 \cdot 3193$	(22)	$6 \cdot 7$ (5)	C(18)) 0.2314	(21) -0.0	598 (27)	-0.0972 (24)	$7 \cdot 4$ (6)

Table 2. Bond distances (\AA) and angles (${ }^{\circ}$)
(E.s.d.'s are shown in parentheses.)

$2 \cdot 319(6)$
$1 \cdot 758(16)$
$1 \cdot 740(21)$
$1 \cdot 724(25)$
$1 \cdot 125(20)$
$1 \cdot 167(29)$
$1 \cdot 135(39)$
$1 \cdot 904(20)$
$1 \cdot 937(15)$
$1 \cdot 938(19)$
$1 \cdot 444(23)$
$1 \cdot 411(39)$
$1 \cdot 362(46)$
$1 \cdot 323(29)$
$105 \cdot 2(9)$
$104 \cdot 5(10)$
$105 \cdot 1(10)$
$111 \cdot 6(8)$
$114 \cdot 9(10)$
$114 \cdot 3(12)$
$175 \cdot 0(24)$
$177 \cdot 1(24)$
$179 \cdot 0(27)$
$115 \cdot 2(7)$
$1115 \cdot 7(7)$
$118 \cdot 1(8)$
$101 \cdot 1(8)$
$101 \cdot 4(9)$
$102 \cdot 7(7)$
$117 \cdot 6(18)$
$126 \cdot 3(11)$
$118 \cdot 3(14)$
$121 \cdot 5(13)$
$118 \cdot 5(19)$

$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 351(34)$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1 \cdot 383(34)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 391(28)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 416(27)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 370(35)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1 \cdot 356(30)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 406(26)$
$\mathrm{C}(12)-\mathrm{C}(7)$	$1 \cdot 406(29)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 377(29)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 381(30)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 336(44)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 434(37)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 391(35)$
$\mathrm{C}(18)-\mathrm{C}(13)$	$1 \cdot 393(42)$
$\mathrm{As}-\mathrm{C}(13)-\mathrm{C}(18)$	$121 \cdot 2(15)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119 \cdot 8(24)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118 \cdot 9(19)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 8(27)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$122 \cdot 8(28)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$121 \cdot 2(17)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$116 \cdot 2(18)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120 \cdot 0(20)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118 \cdot 8(20)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$121 \cdot 6(19)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$121 \cdot 2(20)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$118 \cdot 0(19)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	$120 \cdot 1(15)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120 \cdot 1(25)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120 \cdot 3(21)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$122 \cdot 0(23)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$116 \cdot 9(30)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$120 \cdot 4(24)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	$120 \cdot 3(19)$

References

Hewitt, T. G., De Boer, J. J. \& Anzenhofer, K. (1970) Acta Cryst. B26, 1244-1251.
nnorta, G., Reichenbach, G. \& Foffani, A. (1970). J. Organometal. Chem. 22, 731-737.

Mingos, D. M. P. \& Ibers, J. A. (1971). Inorg. Chem. 10, 1035-1042.
Pratt, C. S., Coyle, B. A. \& Ibers, J. A. (1971). J. Chem. Soc. (A), pp. 2146-2151.
Snyder, D. A. \& Weaver, D. L. (1969). Chem. Commun. pp. 1425-1426.
Ward, D. L., Caughlan, C. N., Voecks, G. E. \& Jennings, P. W. (1972). Acta Cryst. B28, 1949-1956.

[^0]: * Calculated as suggested by Baur from $d_{\mathrm{V}-\mathrm{o}}=0 \cdot 160 \Delta p_{0}+1 \cdot 721$, where Δp_{o} is $p_{\mathrm{o}}-\left\langle p_{\mathrm{o}}\right\rangle$ with p_{o} the bond strength of the oxygen atom. The coefficients were determined by Gopal (1972) from 23 accurately refined structures containing tetrahedrally coordinated vanadium; 1.721 represents the grand average $\mathrm{V}-\mathrm{O}$ bond length.

[^1]: * A list of structure factors has been deposited with the National Lending Library, England, as Supplementary Publication No. SUP 30142 (6pp.). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

